科普专栏 / Information

石墨烯、碳纳米管等碳基导热聚合物复合材料的散热性能

     高温会对电子元器件的稳定性、可靠性和寿命产生有害的影响,譬如过高的温度会危及半导体的结点,损伤电路的连接界面,增加导体的阻值和造成机械应力损伤。因此确保发热电子元器件所产生的热量能够及时的排出,己经成为微电子产品系统组装的一个重要方面,而对于集成程度和组装密度都较高的便携式电子产品(如笔记本电脑等),散热甚至成为了整个产品的技术瓶颈问题。在微电子领域,逐步发展出一门新兴学科一热管理 (Thermal Management),专门研究各种电子设备的安全散热方式、散热设备及所使用的材料。
     热界面材料(Thermal Interface Material)是用于涂敷在散热器件与发热器件之间,降低它们之间接触热阻所使用的材料的总称。凡是表面都会有粗糙度,所以当两个表面接触在一起的时候,不可能完全接触在一起,总会有一些空气隙夹杂在其中,而空气的导热系数非常之小,因此就造成了比较大的接触热阻。而使用热界面材料就可以填充这个空气隙,这样就可以降低接触热阻,提高散热性能。
     基于聚合物的导热材料是填充空隙和间隙的最有应用前景的材料,因为它们与其他材料相比具有很强的亲和力。众所周知,本体聚合物材料的固有导热率较低,约为0.2Wm-1K-1,远远达不到工业需求。加入高导热填料是提高聚合物复合材料导热性的最有效和经济的方法。
     从宏观上看,碳基填料,陶瓷填料和金属填料是最广泛用于提高聚合物复合材料的导热性的填料。其中,金属填料具有最高的导热性,但它们经济效益差且重量太大; 陶瓷填料没有这些缺陷,但它们导热性低。而碳基填料同时具有高导热性和经济性且质量较轻的优点。
碳基复合材料的热传导

即使可以通过改变聚合物分子的规则性来增强聚合物的导热性,但是效果十分有限。在聚合物分子中加入导热填料形成聚合物网络是增强聚合物复合材料导热性最有效的方法。近年来,对各种类型的粒子做了全面的研究,它们的导热系数值见下表1.,根据使用要求,在需要绝缘体纳米复合材料时,广泛使用硅、硼碳酸盐、氮化硼、氧化铝等电绝缘填料。对于没有绝缘要求的应用,可以使用导电填料,如碳纳米管、石墨烯和金属纳米颗粒。

表1.常用复合材料颗粒的导热系数。   
粒子
热电导率(Wm-1K-1)
石墨烯 
 4000-5000
CNT
  > 3000
金刚石
2966
石墨 
1500
400
氮化铝
 > 230
氮化硼
200-300
氧化铝  
 30
氮化硼管
70
白银
429
     理论上,CNT在轴向上的导热系数为6600 Wm-1K-1,石墨烯在室温下的面内方向的导热系数为4000-5000 Wm-1K-1,这两种材料的导热系数几乎是已知材料中最高的。此外,碳纳米管和石墨烯都具有优异的杨氏模量值、热稳定性和导电性,使它们在增强聚合物复合材料中具有极大的应用潜力。
碳纳米管

取向和排列
     由于长径比大,碳纳米管在纵向上具有较高的导热性,而垂直方向上的相对导热系数要低得多,表现出传热性能的各项异性。由于其具有高导热性,制备的复合材料仅需要添加少量碳纳米管即表现出所需的导热性。
通过构造CNT阵列,CNTs可以在基体中定向排列,以制造具有各向异性的导热复合材料。使用化学气相沉积(CVD)方法制备定向CNT阵列; CNT复合薄膜采用原位注射成型的方法制造,可以保证CNT阵列在基体内的定向排列,同时使突出的尖端保持在基体表面外。研究显示分散的CNT对聚合物的导热性没有明显影响,而定向CNT可以明显增强聚合物的导热性。利用电场或磁场等外力也可以构造定向CNT阵列。
图1.热界面材料应用的理想结构模型。所有的碳纳米管均在基体中定向排列,并从基体表面凸出,形成从一个表面到另一个表面的理想导热路径。
分散程度
     碳纳米管等填料在聚合物中的分散程度是影响所制备的聚合物复合材料性能的关键,聚合物的机械性能、热稳定性以及导热导电效率等性能均受到填料分散程度的严重影响。然而,由于碳纳米管的尺寸效应和高的纵横